Wednesday, October 18, 2017

Evolving Types of Architectural 3D Printing

Architectural writing allows me the advantage of taking an outsider's view and crash technologies together to draw conclusions. This is why I wanted to bring to reader's attention four current projects that blur the lines between drones and 3D printing on the construction site. This top-down approach is vital to smoothly integrating them into the modern digital design workflow. Ultimately, if my argument is that additive construction techniques are cost-effective and have the potential to raise the quality of the built environment, being open about their research characteristics now is important while they develop into mainstream products of the future. Experimental projects, while valuable learning opportunities, also tend to be prohibitively expensive as positive results are chased with near endless grants to move the subject matter forward. Quality design on a finite budget–big or small–is where most of the market is.

The wonderfully name Ceramic Constellation Pavilion recently erected in Hong Kong shows the sort of slow evolution the industry is seeing (left). This project does have precedents (the though article states "it's the first in the world") in UCLA Berkeley's Bloom 840 piece 3D printed structure(right). The ceramic pavilion increases this to 2000 uniquely printed bricks and makes improvements in the 3D printed material. Whereas Bloom used an esoteric mix of experimental cement, the Constellation project manages to reduce costs by modifying more readily available terracotta. There's an ingenious interlocking brick design used for the structure in which each brick is unique and contributes to the overall final form of the structure, a quality only achievable with architectural 3D printing. But that leaves one important question, what poor soul was responsible for piecing this whole thing together? 

Students of course! The Ceramic Constellation Pavilion being a project of the Robotics Lab at the HKU Faculty of Architecture. But I have a better idea. Or at least argue strongly for a better approach as I only wish it was my idea. For example, 2012 brought a new method to the construction site of letting robotics do the work of placing the bricks. Flight Assembled Architecture was a highly experimental structure, being led jointly by ETH Zurich for their robotic expertise and architects Gramazio and Kohler and Raffaello D`Andrea. Erected in France out of styrofoam bricks it distinctly falls short of what I had in mind. Nonetheless, it easily shows the potential for simpler modular bricks to be placed in a such a way that a more complex form emerges from their arrangement. Patterns can be programed that would drive labours crazy in the real world because of their high-tolerances. This is the exact quality which will allow construction drones to raise the quality of our buildings. It will reduce labour costs while being more effective, but the drones are also more accurate than humans can ever be. With homes and offices built to higher tolerances, one would expect a corresponding increase in quality as well. The exterior could be sealed better against the elements with better placement of insulation etc., each of which contributes to better thermal performance of the structure. 


Since 2012, people have continued to create robots that build and design. A recent project I thought was just great for showcasing the developments in the field was Arup's participation in (the misleadingly named) The DNA of Making in London (see video below). A project in London which features the use of a crazy looking robot which balances itself on wires, controlled by AI, to create and construct the design. I end on it to reinforce that we should be open minded toward what this technology might eventually look like on the construction site. (Sorry about the obnoxious autoplay. Blame Arup.)

No comments: