Wednesday, July 26, 2017

How Digital Design Supports Modern Sustainable Infrastructure Projects


Waking up every morning wanting to improve one's knowledge of BIM is a welcomed characteristic in the AEC industry. Expanding the group of stakeholders who could potentially benefit from the use of BIM in their project is the focus of this article. "Building Information Modelling" has it right there in the title: we should focus on buildings. This misconception contributes to one reason why I've slowly been shifting from strictly describing the use of REVIT or Sketchup as BIM, and have adopted them as tools in a more comprehensive digital design strategy. Infrastructure projects are a good example of where this technology is expanding to. These tend to be projects where construction is going on, but it isn't necessarily building related. This field is an important area of application for BIM because these projects benefit from same positive characteristics of BIM as vertical building: that being better coordination, earlier visualizations, more streamlined production workflow, etc. (I'm assuming my audience is well-acquainted with the benefits of BIM.)

The AEC industry is therefore faced with a choice to either focus more broadly on digital design, or continue to distinguish between horizontal building projects, like rail interchanges and mining concerns, and traditional vertical building projects. My advice is to ignore the debate over whatever to call it – it's a question that doesn't need to be answered at this exact moment. The far better goal, which is also more difficult to achieve, is to make sure your organization is fully dedicated to capturing the value of digital design on every level of the project: that being mostly found in the characteristics of collaboration and coordination, and analysis.

Public Domain image

An example using computational architecture in a production workflow.

Say I've been tasked with laying out 300 km of pipe across some terrain in beautiful Southern Alberta (seen above). It's a very linear problem: There are not a lot of features on either side of the pipe to help orient oneself to the project. However, there is a good chance that despite the problem presenting itself as highly linear with many repeated elements, a great deal of engineering detail is subtly changing along the length of the pipe that absolutely must go on the drawings correctly. "Here the ability of computational architecture and programming skills to setup overview templates and routines which 1) automate the precise and equal spacing of views along the pipeline track and 2) cross-references engineering specifications contained within the view to some other human-readable format (the subject of data visualization). This translates in a production workflow as a nice cheat sheet that always references the important engineering data scaled to an appropriate layout of the project. This sort of script could be as sophisticated or simple as a firm's programming skill and project resources allow and benefits in terms of efficiency gains and increased accuracy will follow proportionally. In navigating these questions the topic of software development is the most likely source of information about the problems currently facing the AEC industry. 

The BIM Cycle. 

Lastly we come to Circular BIM which has implications for many firms wishing to offer the market a full suite of building services from pre-production to construction to post-occupancy facilities management. I don't remember where I first heard this idea but after applying it consistently for a period, the concept continues to shed light on how firms can attract projects at any stage of their lifecycle. Interpreting from within an economic framework of BIM, it's hard to ignore the many applications of digital design and data science to the field. Take for example the strong growth in the market for scan-to-model services of existing buildings. The real estate and development sectors see great value in digital models in the facilities management field. The decommissioning process is also another natural area to apply BIM. As counter-intuitive as it may sound to long time readers, situations arise where BIM for decommissioning and demolishing is the perfect digital platform for the project, supporting many automated quantifying tasks with only a little post-processing of the scan-to-model data. This is contrasted to how BIM was framed as just a building tool at the beginning of the piece. Firms wanting to expand in any market are going to want to invite clients to start their project anywhere on the BIM circle. Smaller firm might what to focus on only a couple of BIM phases to gain a competitive advantage in them. Larger firms will have an easier time establishing a complete tool chain to capture projects anywhere in the cycle. 

2 comments:

Kate Brownell said...

I have experience some of the great work designed using Revit software and then implemented. So digital design is really helping engineers and contractors to make something solid and creative at the same time. Company like Roshmetal and Westcoaststeel in Canada are doing great by making innovative modern design and structural steel fabrication projects. They uses latest technology and methodologies to mold, forge and craft just about any steel structure.

Anonymous said...

Burning propane releases greenhouse gases that can contribute
to climate change.