Tuesday, November 03, 2015

5 Challenges Facing Structural Integrity and Systems Performance

Lloyd’s Register Foundation - yes that venerable insurance company’s charitable arm – offers us their vision for future issues facing the structural engineering industry. Though the path to this information seems contrived - coming via Jakarta, Singapore, and Peru - some of the highlights I’ve pulled together below are legitimately insightful. As one reads the list I certainly believe the concerns of an insurance company do come through but real foresight is also contained within. The report frames their claims thusly: "The Foundation’s Foresight review of structural integrity and systems performance identifies the key safety challenges that exist in structural integrity and systems performance".

1. The safety of systems containing 3D and 4D additive manufactured parts, including:
  • The new field of 4D printing, where the shape of a 3D printed item can change by a self-activated process triggered by the environment.
  • Research into the mechanisms of in-service degradation to ensure long-term integrity of additive manufactured parts.
  • Ensuring appropriate recognized training exists for those operating and creating parts by additive manufacturing.
2. Engineering science challenges: advancing the state-of-the-art to maximize safety, including:
  • Complex loading – modelling how force is transmitted between environment and structures.
  • Residual stress engineering to increase fatigue life.
  • Assurance of long-term performance of coatings.
3. Development of an economic whole-system approach to demonstrate safety and integrity.

4. Data-centric engineering, including:
  • Designing for data, recognizing that embedded sensors, intelligent systems and data management will form part of engineering design requirements.
  • Promoting data availability for public use including academic research and system improvements.
  • Data analytics, coordinating with the work of the Alan Turing Institute to analyse data quickly and identify actions.
5. Minimizing the risks associated with maintenance and inspection, including:
  • Use of drones and robots to conduct inspection and/or maintenance.
  • Developing assets and systems that are able to monitor their own condition.
  • Design and build structures and equipment that require no maintenance or inspection.

No comments: