Monday, October 24, 2016

A Notable New York Building Reviewed for Archtober

To celebrate @Archtober - an architecture festival just winding down in New York - I wanted to highlight a New York project of supreme architectural merit. Sadly the building in question was demolished in 2014 after only 12 years of use: I am of course talking about the celebrated American Folk Art Museum designed by architects Tod Williams and Billie Tsien completed in 2001. There’s no point in re-litigating the causes of its demise, rather I will use this time remembering a New York architectural jewel. Though the facade of the building was excellent on its own merits – it’s rare bronze alloy panels making a significant visual impact on the street ­­– it was the material selection and careful design that brought the building to my attention. The floorplan, with its many nooks and crannies, reminds many visitors of a domestic interior which is well-intended since the details are craftsmen-like as well, all reflecting the museum’s folk art roots. The budget for this building must have been astronomical to be able to source such fine materials like Douglas Fir and Cherry woods in large amounts and Pietra Piesentina, a hard stone from north Italy, to say nothing of the specialization it took to create the façade. What a dream to be able to design with such materials. And then to be able to specify such fine tolerances and highly customized building details - a feature contractors hate but which good design demands - is what raises the building to a fine example of post-modern architecture. The arcspace blog has pictures and a rundown of some of this great building’s notable details. For those interested in what architects replaced the Folk Art Museum: Diller Scofidio + Renfro of New York were awarded the expansion of the Modern Museum of Art which brought down the building in question but supposedly the American Folk Art Museum’s façade was saved.

Thursday, October 13, 2016

French Architectural 3D Printing Technology Update

Published two days before my blog post this online article can claim to have beaten me to the story. The article also addresses LafargeHolcim’s work in architectural 3D printing with XtreeE in Europe. However, it adds one tantalizing piece of information I’d like to share with my readers in which I might have been ahead of the curve. The article goes on to describe LafargeHolcim’s goals in architectural 3D printing thusly: “LafargeHolcim has initially pegged three 3D-printed concrete targets: high value-added architecture, affordable housing, and robotics-enabled, precast building element fabrication.” Interestingly I had actually already identified the first two points in some writing on the subject from 2015 (an example of which can be found on my Linkedin profile). The third point referred to in the quote I’m a bit wishy-washy on since I see this factor as facilitating the first two but can see how this can become its own business goal depending on one’s position in the AEC Industry. Anyways, just wanted to say that if one wants to be not just days ahead of the curve, but years, please follow the blog and we’ll try to help build and design as much as possible!

Thursday, October 06, 2016

Mini-Review of the University of Manchester’s new Engineering Building

Currently rising up on the University of Manchester’s historic campus is the new Manchester Engineering Campus Development. I really love the look of this building. Encompassing approximately. 870 000 sq. ft. it will provide expanded research and teaching space to the university. During the 1970s it seemed like many tech companies were attempting this same sort of sleek black aesthetic but coming away with an ominous and foreboding black blob instead. Credit goes to architecture firm Mecanoo of London for their light and sleek design that reminds me of lace but with a hyper-technical edge suitable for engineering. The whole rhythm of the façade says, “Hey, some important science is going on in here.” The project is striving for BREEM “Excellent” status with the help of Burohappold Engineering and props to Arup for their civil, mechanical, electrical and structural expertise on the project as each of those factors contribute to the building’s overall sustainability and here are executed to the highest degree. I think the University of Manchester will be very happy with their new building, though with the caveat this is a mini-review with little insight into the building’s layout. I suppose it’s possible the floorplan is a dog’s breakfast of lonely corridors and windowless classrooms but I doubt it considering the outlined project team. I love seeing wide public support for buildings with ambitious architectural goals. It means they will stand a chance to get the resources they need to state, loudly, in architectural terms, that these are our values are as a city and university.

Thursday, September 29, 2016

Mini-Review of French Architectural 3D Printing Project

The picture included above caught my eye the other day: It’s a detail of an architecturally 3D printed project in France by Zurich-based LafargeHolcim and start up XtreeE. (I’ve previously done some architectural 3D printing research with Lafarge Canada when I was at SAIT.) The structure was produced for a kindergarten. If only Canadian school children were so lucky to have such forward thinking planners of educational spaces; alas, Canada rarely has the political will to create high-design, high-concept public buildings. In any case, returning to picture, it shows something very unique about the characteristics of architecturally 3D printed structures, namely, the similarities between architecturally 3D printed forms and organic forms. Architecturally 3D printed structures can be carefully engineered to optimize material – cutting away area that don’t transfer any internal forces – leaving the sort of organic form seen in the image. It’s incredible to think that state-of-the-art materials engineering, applied through architectural 3D printing, results in forms Nature already discovered, but also suggests the method might be on the right track to gaining new efficiencies. Another thing I really like about this sort of solid material engineering is that it's just so bloody difficult to do. Off the top of my head I think only the mighty @Arupgroup could take up the task at the drop of a hat. Though obviously the research arm of LafargeHolcim is not lacking engineering talent. 

Monday, September 26, 2016

Play It Loud Fundraiser Wrap Up

On September 24th 2016 the Birdsell Family & Friends Brain Cancer Research Fund held the first of what is hopefully many fundraisers for brain cancer research in Canada. The initiative is part of the Canadian Cancer Society’s Impact Grant program we will see us as a family try to raise $25000 in 5 years. Though we as a family have been able to make a pretty good dent in the sum ourselves, it would be made just a tiny bit easier if there were also some additional fundraising from events as well; hence the "friends". To that end, I dusted off my DJ headphones and put together a playlist whose beats are so funky they’re actually banned in several counties. The occasion marked the resurrection of an old hobby I haven’t practiced since I lived in Japan and it brought back a lot of great memories to play music loudly again. Thanks again to all those who supported the event! 

Monday, September 19, 2016

Architectural 3D Printing’s Effect On the Real Estate Market

One of the most effective ways to analyze architecture is through its economics and I’ve found one of the best measures of this in particular is the real estate market. Forecasting architectural 3D printing’s effect on the real estate market is a complicated issue and I’m not sure the linked article exactly hits its mark. The uncertainty extends from predicting a technology’s effect – this time a new building system – on the real estate market. Not a lot of research has been done on this issue whereas how different regional pressures effect the real estate market is well understood. So what does the article say? Starting with price: “Three-dimensional printers don’t require labourers, produce much less waste (as materials are fed into the machines), and will be able to erect homes in days instead of months—making them substantially cheaper to build.” What the article hasn’t factored is the R&D costs of developing architectural 3D printing to the level we normally associate with modern building codes so these are all potential savings at the moment.

The article goes on to suggest another benefit of architectural 3D printing to the real estate market: buyers will be able to dream up their own innovative designs. And while A3DP does have some interesting cost implications for producing unique designs (which I have described elsewhere) the article does not identify a major hurdle consumers will face when designing their own house: 3D modelling a structure is a not a trivial matter. One will face challenges in meeting site tolerances, applying local building codes and using complex 3D modelling software; all of which seem beyond the commitment of the average homeowner necessary to drive the sector.

Lastly the article turns to questioning architectural 3D printing’s effect on cities by suggesting A3DP allows for building on previously “unbuildable” sites. This seems like a specious argument to me because this effect can only be marginal at best. There’s simply no glut of “unbuildable” sites in any city I know. That’s what makes them cities. Maybe it’s just my background in architectural history that shapes my view, but I look out at cities around the world and would argue there is evidence people have succeeded in applying every possible combination of structure to fit any site or space (Japanese cities in particular being a good example of this). I just don’t see architectural 3D printing’s main driver of growth being “unbuildable” sites compared to the technology’s labour and time savings.

Friday, September 09, 2016

Raising Structural Engineering’s Sustainability Game

Though constantly enthralled with my day job building with large beams – digitally at least – one thing always in the forefront of my mind is how structural engineering relates to one of the biggest drivers in the modern AEC industry: sustainable design. The steel and concrete which normally makes up a building’s superstructure do not lend themselves naturally to sexy sustainability measures. They’re energy intensive components to manufacture and transport and thereafter become inert and forgotten – ideally for the life of the building. Recently the 2016 Canadian Green Building Awards were announced highlighting some of structural engineering’s contribution to sustainable architecture. Basically what our firm does – or at least what I can contribute – is thoughtful material optimization. This is done by being as geometrically rigorous as possible delivering an efficient structure. Then we have beam design and selection etc. which is done by the engineers. This is mostly governed by local building codes but does have material and cost implications that better engineers will shift to the owners’ advantage. The projects in the article don’t stray too far from engineering’s traditional approach to sustainable structural design. Most of the efficiencies gleaned from their sustainability programme appear to come from high performance enclosures as opposed to novel recycled structural components or planting 20 trees for every steel beam. (Though I do like the sound of a solar-powered concrete pour.) Blackwell Structural Engineering had not previously been on my radar and it was nice to see Fast + Epp’s work acknowledged again but I wonder how they would fare against engineering juggernaut Arup.

Tuesday, August 30, 2016

LIDAR Data in BIM Projects

LIDAR is the use of light instead of radio waves for radar applications. I’ve always just thought of it as “Laser-Radar” but some claim it stands for Light Detection and Ranging. LIDAR technology is quickly being developed for architectural applications. The big leap for the technology was reducing the difficulties of getting the spacial data into the model. BIM software is complex enough and architectural and engineering firms shouldn’t be fighting to post-process the spacial data when there is so much design and building to be done. They just want it there in the model to work with. REVIT’s point cloud system – while being far from simple – can be used with just a few clicks. The linked article highlights two main benefits of using LIDAR data in BIM design projects in the context of a UK-based renovation in a conservation area:

Firstly, old surveying techniques actually produce quite spare data sets when compared to the resolution of LIDAR scans. This increased resolution drives higher accuracy when responding to site conditions and constraints during the design process. A second benefit recognized in the article is the ability with the LIDAR data to align background images of the site within the model accurately for interior or exterior perspectives . I’m less enthused about this one; but only because digital renderings are not my passion. On the other hand, I’m always welcoming of ideas that can be applied to streamline BIM workflows. And here there is evidence BIM has slowly lowered the bar for digital  renderings: the alignment of site images with renderings, once a highly technical affair, is now automatic.

Monday, August 08, 2016

Brick Laying 3D Printing Robot For Architecture

It seems like the doldrums of summer have hit my news feed with very little in the way of architectural 3D printing news being released this week. It’s not surprising, therefore, that the most interesting robot video of the week comes from Australia, where it’s winter. The attached mesmerizing video is of the Fastbrick Robotics’ Hadrian 105 robot at work. Many assume 3D printing necessitates materials emerging from a nozzle but this is not the case. I guess there is an argument to be made the topic should be reframed as “construction robotics” but in this case the software used is directly related to architecture. I’ve written elsewhere that the development of quality software played an important role in the spread of architectural 3D printing. Here the Hadrian robot interprets already existing plugins for Solidworks 3D – a program I’ve used in the past to design of models for 3D printing – to calculate out the brick laying pattern. Mike Pivac, CEO, has this to say about the company’s expectation for the technology: “Fastbrick Robotics aims to make improvements in the areas of speed, accuracy, safety and waste” . I can’t blame him for wanting to get into the brick laying market; the brick laying market is worth a staggering $12 bil. globally.

Thursday, July 28, 2016

Hierarchical Metallic Metamaterial Invented For Use In Architectural 3D Printing

The following story was all over my news feed last week so I thought I’d break it down here for our readers: Researches at Virgina Tech have invented a new material with several interesting characteristics, combining stiffness, strength, low-weight, and high flexibility. These desirable characteristics are normally associated with the aerospace industry but are easily transferred when used architecturally. The notable behaviour results from the material reacting hierarchically depending on the forces applied. Nano-scale materials engineering allowed designers to print the material in such a way that regions of the lattice react differently depending on how the piece is intended to resist applied forces. Nature has already provided us with a versatile material that mirrors this behaviour in bone. Here 3D printing is really key to the development of this metallic metamaterial since rarely in the past have human-made materials allowed for such fine control of the nano- and macro-scale structure. The article goes on to stress that one of the major benefits of this process is its scalability. One of the major hurdles in the development of graphene was the fabrication of pieces useful on a human scale. Researches are confident this process can delivery much larger pieces. Will this a material help build the perfect architecture of the future?

Monday, July 25, 2016

Calgary Folk Music Festival 2016

I was a bit busy volunteering with the Calgary Folk Music Festival recently but will be back  posting this week. 

Thursday, July 14, 2016

The Rock n’ Roll Lives of General Contractors: A Mini-Financial Analysis

In an effort to model the steps in a preliminary economic analysis of an industry and highlight the role of the general contractor in design and construction we describe below the economic characteristics of the general contracting industry:

On any given project of considerable size the flow of money to the general contractor will dwarf the design costs of the project. This has implications for the design fee structure negotiated which are usually ranges between 5-10% of total construction costs. From the Engineering News Record database we learn the top two international general contracting firms by revenue are France’s Vinci and Spain’s ACS Group with annual revenue of 53.7 bil. (in CDN$ 2011) and 55.9 bil. (in CDN$ 2012) respectively. These are massive companies grown through acquisition which glean most of their revenue through infrastructure projects but as one can see they are much bigger than even some of the world’s largest construction projects.

Moving toward more regional players for contrast, Edmonton’s PLC Construction and Calgary’s Graham Construction are two of the biggest companies in the province with revenue of $8 bil. and $2 bil. in 2014 respectively. For comparison, removing oil and gas projects, the top four infrastructure projects currently under construction in Alberta are the Valley Line LRT in Edmonton at $3.2 bil., the StoneGate Landing development in Calgary at $3.0 bil. and the Anthony Henday Drive Expansion in Edmonton at $1.8 bill. Falling just outside the top ten, the next architectural development down the list Calgary’s new airport concourse at $1.4 bil. As one can see, even a billion dollar company can be exposed to risks associated with a project representing a significant portion its annual revenue. After-tax profit margin is estimated to be in the single digits. Ultimately for these companies, controlling construction costs is central to giving gross profit margins the space to cover company overhead. 

Helpful Links: 

Thursday, July 07, 2016

REVIT Safe Mode

As complex a tool Revit is to build with, sometimes the problems encountered are even more complex. Throwing Revit power users a bone, design firm Stantec created a great problem solving tool that allows one to basically start Revit in Safe Mode. Third party add-ons and extensions are popular for increasing productivity but also have a history of creating discrepancies and conflicts which might freeze or otherwise corrupt your model. Stantec’s utility allows for the precise control of what’s on when Revit starts up. This can greatly decrease the number of possible conflicts when trying to troubleshoot a model. I posted it here because I thought the tool might come in helpful for some of our readers in the future and as a way to thank Stantec for sharing their work with the community.